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Abstract
Deterministic ratchets, in the inertial and also in the overdamped limit, have
a very complex dynamics, including chaotic motion. This deterministically
induced chaos mimics, to some extent, the role of noise, changing, on the other
hand, some of the basic properties of thermal ratchets; for example, inertial
ratchets can exhibit multiple reversals in the current direction. The direction
depends on the amount of friction and inertia, which makes it especially
interesting for technological applications such as biological particle separation.
We overview in this work different strategies to control the current of inertial
ratchets. The control parameters analysed are the strength and frequency of the
periodic external force, the strength of the quenched noise that models a non-
perfectly-periodic potential, and the mass of the particles. Control mechanisms
are associated with the fractal nature of the basins of attraction of the mean
velocity attractors. The control of the overdamped motion of noninteracting
particles in a rocking periodic asymmetric potential is also reviewed. The
analysis is focused on synchronization of the motion of the particles with
the external sinusoidal driving force. Two cases are considered: a perfect
lattice without disorder and a lattice with noncorrelated quenched noise. The
amplitude of the driving force and the strength of the quenched noise are used
as control parameters.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The nonequilibrium mechanism of generating net currents, in the absence of bias, from
fluctuations interacting with broken symmetry structures, has recently received much
attention [1–3]. Feynman et al [4] introduced the ratchet idea, basically a spatially asymmetric
potential, to show the fundamental property of detailed balance that forbids the possibility
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of nonzero net current at the thermodynamic equilibrium. On the other hand, if detailed
balance is broken and the substrate potential is asymmetric, a nonzero net drift has been
observed in the absence of any macroscopic gradient of forces [5]. This interest is due
to the possible applications of these models for understanding such systems as molecular
motors [2, 3], nanoscale friction [6], surface smoothening [7], coupled Josephson junctions [8],
mass separation and trapping schemes at the microscale [9]. The fluctuations that produce the
net transport are usually associated with noise, but they may also arise in the absence of
noise, with additive forcing, in overdamped deterministic systems [10], overdamped quenched
systems [11] and underdamped ones [12–15].

Molecular motors are individual protein molecules that are responsible for essentially
all internal biomaterial transport. They perform tasks vital to the life of the organism like
muscle contraction, intracellular transport and cell division. The ratchet model has helped to
understand how molecular motors operate [2, 3].

Thermal ratchets have mainly been used to model molecular motors. Nevertheless,
deterministic ratchets [11–15] may be used to model molecular motors in some cases because
the periodic and chaotic forces associated with deterministic ratchets can lead to directed
transport, even in the absence of thermal fluctuations. A possible example of deterministic
ratchet application may be molecular motors in muscles that have linear structures, which
consist of many parts that supply intrinsic degrees of freedom essential for net motion to occur.
Also the two-headed kinesin direction of motion along microtubules could be reversed by
adjusting the architecture of a small part of the molecular motor called the neck region [16, 17].
In these examples the existence of a net current depends less on the position thermal fluctuations
produced by a noisy environment, while intrinsic structures and symmetry properties of the
system may play a more important role in producing directed transport. Recently, stochastic
ratchet models were proposed characterized (i) by a spatial coordinate x which describes
the displacement of the motor molecule along the filament, (ii) by M internal states, which
represent the various conformations the molecule can attain for a fixed value of x , and (iii) by K
spatial positions per motor cycle at which the motor molecule can undergo transitions between
these different internal states [18].

Inertial ratchets, even in the absence of noise, have a very complex dynamics, including
chaotic motion [12]. This deterministically induced chaos mimics, to some extent, the role of
noise [19], changing, on the other hand, some of the basic properties of thermal ratchets, for
example, inertial ratchets can exhibit multiple reversals in the current direction [12, 13]. The
direction depends on the amount of friction and inertia, which makes it especially interesting
for technological applications such as biological particle separation [9].

The dynamical current reversal in deterministic systems has been studied in detail recently.
Jung et al [12] studied the case of an underdamped particle periodically driven in an asymmetric
potential without noise and found multiple current reversals varying the intensity of the external
perturbation. They characterized the motion by cumulants of the contracted, time-dependent
solution of the Liouville equation and distinguished regular from chaotic transport. Mateos [13]
analysed the relation between the bifurcation diagram and the current. He conjectured that the
origin of the current reversal is the bifurcation from a chaotic to a periodic regime. Close to this
bifurcation he observed trajectories revealing intermittent chaos and anomalous deterministic
diffusion. Barbi et al [14] related the transport properties to phase locking dynamics. They
interpreted the current reversals in terms of different stability properties of the periodic rotating
orbits and reported cases where current reversals also appear in the absence of a bifurcation
from a chaotic to a periodic motion.

The class of inertial ratchets, in the absence of noise, may be related to the damped–driven
pendulum, a chaotic system studied several years ago, among others, by Grebogi et al [22]. In
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the case of the pendulum the state variable under study is the angle between the pendulum arm
and the rest position, i.e. a S1 type variable. In the case of a deterministic inertia ratchet the
position of a particle in the periodic potential is an R1 state variable. Then a periodic (chaotic)
oscillation of the pendulum around the minimum corresponds to a regular (chaotic) movement
of a particle in the periodic potential with zero mean velocity. An anticlockwise (clockwise)
rotation of the pendulum corresponds to a movement of the particle in the ratchet potential
with positive (negative) mean velocity.

The main difference between a deterministic inertia ratchet and a damped pendulum is the
asymmetry in the potential. This asymmetry gives rise to a preferred direction of movement
in the ratchet potential. Nevertheless, an important feature persists when the symmetry of the
potential is broken: the fractal nature of the different coexisting attractors.

The problem of controlling the current reversal in inertia ratchets is important for
technological applications, such as designing new particle separation techniques. We present
in this work different strategies to control the current of an inertial ratchet. The control
parameters analysed are the strength and frequency of the periodic external force, the strength
of the quenched noise that models a non-perfectly-periodic potential, and the mass of the
particles. For each control process the approach presented here is valid in regions in the
control parameter’s space where the ratchet has only two mean velocity attractors. Only
noninteracting particles are considered. The success of each control mechanism is guaranteed
by the fractal nature of the basins of attraction of these two mean velocity attractors. Then
small perturbations of the control variable are enough to produce a jump between solutions
with different net drift characteristics.

Another important issue for the actual realization of current control is the influence of
disorder. In a recent work [15] some of us investigated the effect of quenched disorder on
an underdamped rocking ratchet, finding that current reversal and chaotic diffusion may take
place on otherwise regular trajectories and some chaotic trajectories become regular.

In the case of an overdamped ratchet subject to an external oscillatory drive, an unusual
behaviour was reported in [11]: quenched disorder induces a normal diffusive transport in
addition to the drift due to the external drive. Moreover, this diffusive motion is enhanced
by higher values of the quenched disorder. If the quenched disorder has long-range spatial
correlations, diffusion becomes anomalous, and both the correlation degree and the amount
of quenched disorder can enhance the anomalous diffusive transport [20]. Understanding
the origin of large fluctuations of the same order of magnitude as the average velocity is
important from an experimental point of view, in studying friction, in investigating the motion of
nanoclusters or monolayers sliding on surfaces,and in designing particle separation techniques.

Finally, we present the forced and overdamped motion of noninteracting particles in a
periodic asymmetric potential [21]. The analysis is focused on synchronization of the motion
of the particles with the external sinusoidal driving force. Two cases are considered: a perfect
lattice without disorder and a lattice with noncorrelated quenched noise. The amplitude of
the driving force and the strength of the quenched noise are used as control parameters. We
show that the mean velocity of the particles and the diffusion coefficient have a nonmonotonic
dependence on the quenched noise strength. We explain these nontrivial results on the basis
of the synchronized motion of the individual particles in the perfect lattice.

2. The model

2.1. Single-particle systems

A single-particle inertial ratchet is modelled by the equation of motion:

ε ẍ + γ ẋ = −dU

dx
+ F(t) + G(x) (1)
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where ε is the mass of the particle, γ is the damping coefficient, U is the ratchet potential,
F(t) is the time dependent external force and G(x) is the quenched noise. The external force
is given by

F(t) = � sin(ωt) (2)

where � and ω are respectively the amplitude and frequency of an external oscillatory forcing.
The unperturbed ratchet potential is periodic and asymmetric and a typical function used to
model it is

U(x) = − sin(x) − µ

2
sin(2x). (3)

It has a period λ = 2π and has been the subject of extensive studies both in models
with [11, 15, 23] and without disorder [12–14]. The addition of the quenched disorder term

G(x) = αξ(x) (4)

gives a more realistic representation of the substrate. The coefficient α � 0 is the strength of
this quenched disorder and ξ(x) are independent, uniformly distributed random variables with
or without spatial correlations, corresponding to a piecewise constant force on the period of
the potential. Two special cases are

• overdamped ratchets, ε = 0, and
• perfect lattice, α = 0.

As usual in nonlinear dynamical systems, numerical solutions of equation (1) are required.
Here they are obtained using a variable step Runge–Kutta–Fehlberg method [24].

To study the single-particle ratchet the evolution of several adimensional dynamical
variables must be analysed because they give complementary information.

• The adimensional position x̃ = x/λ; this gives the position of the particle along the
ratchet.

• The adimensional velocity ṽ = v/vω, with vω = λ/T . The mean value of this variable
gives the transport velocity of a particle along the ratchet.

• The discrete sequences obtained by sampling x̃ and ṽ with a sampling period Tsa = T =
2π/ω:

x̃sa = x̃(kT )

ṽsa = ṽ(kT ) with (k = 0, 1, 2, . . .).

Using this variables it is easier to see if a synchronization with the external driving force
has been reached.

A typical trajectory in an inertial ratchet consists of a transport movement, superposed on
an oscillation. The transport movement may have 〈ṽ〉 > 0, 〈ṽ〉 < 0 indicating the transport
sense. The particular case or 〈ṽ〉 = 0 indicates no transport along the ratchet. The oscillation
may or may not be synchronized with the external driving force. The synchronization is
recognized by a periodic sequence of ṽsa and trajectories may be classified using their rotation
number: if the movement along the ratchet becomes synchronized the rotation number is
rational; if synchronization fails the rotation number is irrational.

Let us take an adimensional time t̃ = t/T . A maximum value t̃tran is defined to decide if
synchronization has been reached or not. Then the permanent regime is considered to start at
the first repetition of ṽsa or at t̃tran, the first that occurs. After this starting point a trajectory is
recorded up to t̃max, with t̃max = t̃tran + Nmax, where Nmax is the period of the ṽsa sequence in a
synchronized case and it is an arbitrary value if no synchronization is reached.
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The initial conditions are also relevant in nonlinear systems, in particular if several
attractors coexist. In inertial ratchets the coexistence between two attractors with different
mean velocities is interesting because it implies the possibility of controlling the transport
along the ratchet to separate particles. Let us call these attractors mean velocity attractors and
label them with the particle 〈ṽ〉.

2.2. Multi-particle systems

To study the transport phenomena from a statistical viewpoint a collection of particles with
different initial conditions is used. The collection of particles is represented by an ensemble
consisting of N particles having initial velocities v0 equally distributed in a range [vmin, vmax],
and initial positions equally distributed in the range [xmin, xmax]. The initial probability density
is given by

ρ(x̃, ṽ, 0) = [H (ṽ − ṽmin) − H (ṽ − ṽmax)] · [H (x̃ − x̃min) − H (x̃ − x̃max)], (5)

where H (x) is the step function. The current is defined as

〈Ṽ 〉 = 1

N

N∑

i=1

〈ṽ〉i .

To characterize the complete evolution of the packet, the first four adimensional cumulants,
the adimensional mean velocity, and the adimensional diffusion coefficient of the sampled
positions are evaluated as functions of the adimensional time. They are defined as follows:

C̃1 = 〈x̃k〉; (6)

C̃2 = 〈x̃2
k 〉 − C̃2

1 ; (7)

C̃3 = 〈x̃3
k 〉 − 3C̃1C̃2 − C̃3

1 ; (8)

C̃4 = 〈x̃4
k 〉 − 4C̃1C̃3 − 6C̃2

1 C̃2 − 3C̃2
2 − C̃4

1 ; (9)

Ṽ = lim
t→∞ dC̃1/dt̃; (10)

D̃ = lim
t→∞ dC̃2/dt̃ . (11)

3. Control of transport properties

There are different possible strategies to control the current in a ratchet. In this paper we
consider the strength and frequency of the periodic external force and the strength of the
quenched noise. For each choice the approach presented here is valid in regions in the control
parameter’s space where the ratchet has only two mean velocity attractors. Only noninteracting
particles are considered. The success of each control mechanism is guaranteed by the fractal
nature of the basins of attraction of these two mean velocity attractors. Then small perturbations
of the control variable are enough to produce a jump between solutions with different net drift
characteristics.

Let us name generically η the selected control parameter. There are at least two different
ways to do a real experiment to study the effect of η on the dynamics. One way is let the particle
evolve starting from the same initial conditions when η changes (method I). Another possible
way is to change η in the middle of the trajectory of the particle (method II). Simulations must
be carried out with both methods because they give different information and they correspond
to two possible experimental realizations. The interest is in collective behaviour, but when
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Figure 1. (a) Regions of different normalized mean velocities 〈v〉/vω in the parameter space
(ω,�) obtained using method I. (b) Enlargement of the rectangle � = [0.83, 1.03], ω = [0.6, 0.7].
Intersection of the surface of figure (a) with the plane (c) ω = 0.67, and (d) � = 0.9.

noninteracting particles are considered it is convenient to start the control procedure with the
single-particle case. The control procedure will follow the following steps.

• Step 1: determine with method I a parameter’s space region where two mean velocity
attractors coexist.

• Step 2: verify with method II that two attractors coexist.
• Step 3: confirm that their domains of attraction are intermixed fractals.
• Step 4: check that the control is working in a few cases.
• Step 5: apply the control procedure to the multi-particle system.

4. Examples

4.1. Control by amplitude and frequency of the external driving force

4.1.1. Step 1. Determination of a region in the parameter space. Let us start with the case
of a one-particle system (ε = 1.1009) in a perfectly periodic potential (α = 0), with µ = 0.5
and damping coefficient γ = 0.1109. Consider the case of � and ω as control parameters.

To determine the region of interest in the parameter space we obtain the 〈ṽ〉 bifurcation
diagram using method I. If both control parameters, � and ω, are explored the parameters
space is bi-dimensional. In figure 1(a) the regions of different normalized mean velocities are
shown with different colours. See that inside the rectangle � ∈ [0.83, 1.03], ω ∈ [0.6, 0.7],
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Figure 2. Bifurcation diagrams for a particle with initial conditions x̃0 = 0, ṽ0 = 1.5 as a function
of �, ω = 0.67 by method I: (a) 〈ṽ 〉; (b) ṽsa ; (c) enlargement of (a) for � ∈ [1, 1.05]; (d) enlargement
of (b) for � ∈ [1, 1.05].

there are transitions between normalized mean velocities +1 and −1. The transitions may be
more clearly seen in the enlargement of the rectangle, shown in figure 1(b), and they can also
be seen in figures 1(c) and (d), where the intersections of the surface in figure 1(a), with the
planes ω = 0.67 and � = 0.9 are respectively shown. This is precisely a region of interest
because these transitions are a hallmark of the coexistence of two mean velocity attractors.

Figure 2 shows both the adimensional mean velocity 〈ṽ〉 (figure 2(a)) and the adimensional
sampled velocity 〈ṽsa〉 (figure 2(b)) bifurcation diagrams, with � as control parameter and
ω = 0.67. Figures 2(c) and (d) are enlargements for � ∈ [1, 1.05]. Let us make some
remarks. (a) See again the inversions in 〈ṽ〉 between the values +1 and −1 in the interval
� ∈ [0.83, 1.05] indicating the presence of two coexisting mean velocity attractors. (b) Note
that there exists only one value of ṽsa in the same region. This fact indicates that the oscillations
superimposed on the net transport motion are synchronized with the external driving force.
(c) There are regions with several values of ṽsa but only one value of mean velocity: for
example, in � = 1.035〈ṽ〉 = +1, while ṽsa has four different values, indicating that the
oscillations are synchronized with the external driving force but with a rotation number 1:4.
Another interesting case is � = 1.527. In this case we have a chaotic oscillation superimposed
on a transport motion with 〈ṽ〉 = +1. (d) The values of � where the inversions in 〈ṽ〉 take
place are strongly dependent on initial conditions. This a sign that the coexisting mean velocity
attractor domains of attraction are intermixed fractals.

For a deep understanding, a few typical trajectories are shown in figures 3 and 4. In 3(a)
and (b) we show the case of three trajectories corresponding to ω = 0.67 and � = 1.010,
� = 1.011 and � = 1.015 respectively. As can be seen in figure 1, all of them have only one
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Figure 3. Trajectory of a particle with initial condition x̃osc = 0, ṽ0 = 1.5 for ω = 0.67 and
(a) � = 1.010, 〈ṽ〉 = +1 and ṽsa � −2; (b) � = 1.011, 〈ṽ〉 = −1 and ṽsa � −2; (c) � = 1.015,
〈ṽ〉 = +1 and ṽsa � −2. (d) Typical phase space corresponding to oscillations superimposed on
the net motion of particles of (a)–(c).

value for ṽsa � −2, but they have 〈ṽ〉 = +1 or −1. The phase spaces corresponding to the
oscillations superimposed on the net motion are similar and have rotation number 1, and its
typical shape is shown in figure 3(d) for � = 1.015.

Figure 4 shows two more cases corresponding to ω = 0.67 and � = 1.035 and � = 1.527
respectively. These trajectories correspond to regions of figure 2(d) where oscillations have
different rotation numbers. For � = 1.035 the rotation number is 1:4, while for � = 1.527
oscillations are chaotic.

4.1.2. Step 2. Verifying the coexistence of two mean-velocity attractors with method II.
Figure 5 shows the 〈ṽ〉 bifurcation diagram obtained with method II. The step �� is 0.001
and the particle evolves during t̃ = 499 for each �. Figure 5(a) was obtained beginning with
� = 0.896 65 as the initial �. The normalized mean velocity remains unchanged, equal to
unity, until � � 1.05. Figure 5(b) was obtained beginning with � = 0.896 66 as the initial �.
The normalized mean velocity remains unchanged at −1 until � � 1.08. The initial �s were
chosen by looking at figure 2(c). For comparison figure 5(c) shows the bifurcation diagram
with method I. A number of transitions take place between the two mean velocity attractors
as � increases, showing that the system is extremely sensitive to the value of �. On the other
hand, if method II is used the particle mean velocity remains locked to one of the attractors as
� is changed. The locking value depends on the starting �.
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Figure 4. (a), (b) Trajectory of a particle with initial condition x̃0 = 0, ṽ0 = 1.5 for ω = 0.67 and
(a) � = 1.035 and (b) � = 1.527; (c), (d) phase space corresponding to oscillations superimposed
on the net motion of particles of (a) and (b).

4.1.3. Step 3. Confirming that the coexisting attractor domains of attraction are intermixed
fractals. Extensive numerical simulations demonstrate that this behaviour in the parameter
space is obtained when the domains of attraction of the coexisting mean velocity attractors are
intermixed fractals.

To confirm this conjecture consider the case of � as control parameter, in the above
mentioned range. We fixed ε = 1.1009, γ = 0.1109, µ = 0.5, � = 0.896 65 and ω = 0.67.
The initial conditions are selected on a grid of 512 × 512 points in the rectangular region
limited by x̃0 ∈ [−0.5, 0.5] and ṽ0 ∈ [0, 2]. These ranges are chosen to cover a whole spatial
period for the potential (around the position x̃0 = 0), and kinetic energies extending from zero
up to the height of the potential barrier. As far as only two types of solution exist as discussed
above, we denote with a black dot an initial condition (x0, v0) that leads to a trajectory with a
normalized mean velocity −1, and we denote with a white dot an initial condition that leads
to a trajectory with a normalized mean velocity +1. In this way, the basins of attraction for
both mean velocity attractors were obtained, as shown in figures 6(a)–(d). Figures 6(b)–(d) are
successive enlargements of figure 6(a) and the evidence of a typical fractal behaviour emerges
from them. The solid lines in these figures are equipotential curves with the corresponding
potential value printed on them. We used a box counting method to study the fractal nature
of the mean velocity domains of attraction. Our results show that the mean velocity attractors
are fractal with a dimension d = 1.87 for the negative mean velocity domain of attraction.
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Figure 5. (a), (b) Normalized mean velocity bifurcation diagrams using method II. The particle
has initial conditions x̃0 = 0 and ṽ0 = 1.5. The control parameter is �, while ω = 0.67. The
particle starts at (a) � = 0.896 65 and (b) � = 0.896 66. (c) Bifurcation diagram using method I.

4.1.4. Step 4. Checking the control of the single-particle system. The practical consequence
of having intermixed fractals is that most of the initial conditions belonging to the positive mean
velocity domain of attraction are surrounded by initial conditions belonging to the negative
mean velocity domain of attraction. Then it is possible to produce a jump from one attractor
to the other using only a small perturbation in the value of � as shown in figure 7.

Several trials may be required to produce the desired jump but the important point is that
only small perturbations are required. In a similar way the direction of movement may be
reversed using a small change in ω.

4.1.5. Step 5. Controlling the current in a multi-particle ratchet. Let us consider the case
of multi-particle noninteracting ratchets. As for the one-particle case we first show the results
of simulations with method I, which in the packet of particles means returning to the initial
condition ρ(x̃, ṽ, 0) when � changes.

The results shown in figure 8(a) were obtained with Nmax = 200, [x̃min, x̃max] =
[0.809, 1.83] and v0 = 1 corresponding to a well spread-out packet of particles with initial
positions between two maxima of the potential. There is only one current reversal at � � 1.05,
where an order–disorder transition takes place. About three-quarters of the particles in the
ensemble have mean velocity 〈ṽ〉i = −1 and the remaining quarter have 〈ṽ〉i = +1, giving a
normalized ensemble mean velocity 〈Ṽ〉 � −0.5. These results agree with Mateos’s conjecture
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Figure 6. (a) Basins of attraction of −vω (black dots) and +vω (white dots) without quenched
disorder (α = 0) with � = 0.896 65. The initial conditions are selected on a grid of 512 × 512
points. The solid lines are equipotential. (b)–(d) are successive enlargements of figure (a) to show
the fractal nature of the basins of attraction.

that current inversion is associated with order–disorder transition in the bifurcation diagram
of one particle [13].

In order to obtain the behaviour corresponding to a narrow initial packet, we work with
the initial condition [x̃min, x̃max] = [0.809, 0.810] and v0 = 1. In this ensemble, particles
are initially located near the maximum of the potential and having a small initial velocity.
Figure 8(b) shows a current inversion around � = 1.015. The corresponding region at
the bifurcation diagram has no order–disorder transition, contradicting Mateos’s conjecture.
However, the same current reversal, associated with an order–disorder transition, which was
obtained for the case of a wide packet for � � 1.05, does takes place.

Initial sets of particles with positions near the minimum of the potential and sets of
particles with identical initial positions and different initial velocities equally distributed were
also studied with qualitatively similar results.

It is possible to use method II to control the current. For example, to obtain a current
〈Ṽ 〉 = −0.5 which is the minimum current of figure 8(b), we use method II with the same
narrow packet as used above, starting with �min = 1.013 and increasing it up to � = 1.06 in
100 equal steps. The time period for each step in � was commensurate with T . The normalized
mean velocity as a function of � is shown in figure 8(c). As � changes each particle remains
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Figure 8. (a) Current of a set of particles with initial positions between two maxima of the potential
x̃0 ∈ [0.809, 1.83] and initial velocity v0 = 0.01 as a function of � (method I); (b) current of a
narrow set of particles centred at the maximum of the potential (x̃0] ∈ [0.809, 0.810]) and initial
velocity ṽ0 = 0.0067 as a function of � (method I); (c) example of control of current; the narrow
distribution of particles of (b) (method II).

locked to its mean velocity 〈ṽ〉i corresponding to �min and the current 〈Ṽ 〉 also remains locked
to its initial value −0.5. This behaviour persists until � = 1.0495, where the current drops to
〈Ṽ 〉 = −1. The unlocking effect corresponds to a chaos to order transition. If the simulation
starts with any �min producing a positive current for the packet, the unlocking effect produces
a current reversal as Mateos found.

5. Control of the overdamped ratchet by the external driving force amplitude

Things are very different in the overdamped ratchet (ε = 0). Let us start again with the case
of only one particle with the specific initial condition x̃0 = 0 and without quenched noise
(i.e. α = 0). Let us take Nmax = 1200. The bifurcation diagrams of ṽsa and 〈ṽ〉 are shown
in figure 9. Parameters are fixed to � = 1, µ = 0.5 and ε = 0.1 and two ranges of � are
considered: [0, 2] and [2, 4].
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Figure 9. Adimensional sampled velocity ṽsa , and mean velocity 〈ṽ〉 of a particle in a perfect
lattice, as a function of �. The particle starts at x̃ = 0. (a) Note that for � ∈ [0, 2] there are
jumps in 〈ṽ〉 at � � 0.96, 1.22, 1.47, 1.57, 1.75, 1.95, but ṽsa has no bifurcations in this range of
�. The label over each zone indicates the number of valleys crossed by the particle, forward (+)

and backwards (−) in a period T . (b) � ∈ [2, 4]; jumps take place at � � 2.0125, 2.1675, 2.3025,
2.5875, 2.6375, 2.8775, 2.8875, 3.1475, 3.1675, 3.4125, 3.4575, 3.6825, 3.7525 and 3.955; ṽsa
bifurcates at the descending jump (i.e. for these values of �, ṽsa has more than one value).

For � values in the range [0, 2] (figure 9(a)), ṽsa is a monotonic increasing function of
�. On the other hand, 〈ṽ〉 is a stepped function with jumps at specific � values. The reason
for these jumps may be understood by considering how the particle’s position x̃ varies with
the adimensional time t̃ . When � is below 0.96 the particle starts in a potential valley and it
oscillates inside this valley in synchronism with the external drive returning to the same position
and the same velocity every T . During the time T the particle stays inside the same valley at
all times. This synchronism explains why only one value of ṽsa is obtained: every time the
velocity of the particle is sampled it has the same value within its oscillatory motion. At � = 1
the particle starts in one valley of the potential; it moves uphill and ends in the same position
but inside the forward contiguous valley. Therefore, over the region � ∈ [0.96, 1.22] there is
only one value of ṽsa but now 〈ṽ〉 = 1, showing that the particle remains synchronized with the
external drive but now it advances one valley during T . As � increases the particle advances
two valleys (see the label (+2,−0) in figure 9(a)) and three valleys (see the label (+3,−0) in
figure 9(a)) during each T , giving 〈ṽ〉 = 2 and 〈ṽ〉 = 3, but it remains synchronized, giving
only one value of ṽsa. So far, the particle does not return to any valley during the driving-force
negative semicycle. If � further increases, 〈ṽ〉 presents descent jumps. The reason is that
during T the particle goes forward crossing several valleys but it returns to one or more valleys
during the negative semicycle of the external driving force. Moreover, the motion of the particle
remains synchronized with the external force in the entire range [0, 2] and ṽsa has only one value.

Let us now analyse the region � ∈ [2, 4] shown in figure 9(b). Here 〈ṽ〉 suffers many
jumps between values 2 and 1 or between values 1 and 0. Furthermore, noninteger values of 〈ṽ〉
may be obtained in these descent jumps. Two typical cases are � � 2.637, where 〈ṽ〉 = 4/3
and ṽsa has three different values, and � = 3.955, where 〈ṽ〉 = 6/7 and ṽsa has seven different
values. The discrete number of values for ṽsa indicates that the particle remains synchronized
but now it starts in a valley and after T it ends in a different position inside another valley.
For example, in the case � � 2.637 the particle advances seven valleys and returns six valleys
during T , but the last relative position is not equal to the initial one. Only after 3T does the
particle reach the same relative position four valleys forward. This can be seen in a plot of the
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Figure 10. Particle distribution function for a packet of 1200 particles in a perfect lattice for
� = 3.955 at t̃ = 160. Initially, the particles are uniformly distributed over one valley, but the
particles concentrate in eight bins at t̃ = 160. The bins labelled 36 and 79 correspond to the same
relative position in contiguous valleys.

phase space, ṽosc as a function of x̃osc, where it can be seen that the phase-space curve closes
itself after 3T .

The situation is quite similar at all the other descending jumps. For example, at � � 3.955,
〈ṽ〉 = 6/7 and ṽsa has seven different values. After 7T the particle is in the same relative
position but six valleys ahead of the initial one. The particle remains synchronized for every
value of � ∈ [0, 4] and then trajectories may be classified using their rotation number. For
the descending jumps mentioned above, the rotation numbers of the trajectories are 1/3 for
� � 2.637 and 1/7 for � � 3.955. The conclusion is that in overdamped ratchets particles
remain locked to the external driving force.

To study the multi-particle system the evolution of the first cumulant C̃1 is evaluated for
different values of �, in the range [0, 2]. It increases linearly with time, changing its slope with
�. Furthermore, all the higher order cumulants reach constant values and the adimensional
diffusion coefficient D̃ = dC̃2/dt̃ drops to zero, after a very short transient (shorter than T ).

We have also studied the evolution of the particle density with time. Initially, the particles
are distributed over the whole valley, but the distribution collapses to only two positions as
time evolves. In particular, it consists of two delta functions with most of the particles in one
position inside one valley and a small number of particles located in the same relative position
but inside the forward contiguous valley. As there are two delta functions and not only one,
C̃2, C̃3 and C̃4 are not equal to zero but they tend to a constant value. The diffusion coefficient
D̃ is zero.

The situation is quite different at the bifurcation points of figure 9(b), for example
� � 3.955. In figure 10 the particle density function for this particular case is shown after
160T . All the particles visit periodically seven positions inside a valley producing eight
bins (two of them corresponding to congruent positions in two contiguous valleys). The first
cumulant increases linearly with time with a fractional slope 6/7 but all the other cumulants as
well as the diffusion coefficient D̃ oscillate with an adimensional period equal to 7T . A similar
behaviour takes place for � � 2.637, where C̃2 and D̃ are 3T periodic functions of time and
there are three positions inside each valley visited by the particles every t̃k . Let us end the case
of the perfect lattice remarking that the motion of the particles remains synchronized for all
values of � and as a consequence only rational rotation numbers appear. There are no regions of
interest in (�, ω) parameter space because there is no coexistence of mean velocity attractors.
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Figure 11. (a) Basins of attraction of −vω (black dots) and +vω (white dots) without quenched
disorder (α = 0) with � = 0.896 65. The initial conditions of (a)–(c) are selected on a grid of
256 × 256 points. The initial conditions of (d) are selected on a grid of 1024 × 1024 points.
(a) α = 0, (b) α = 0.005; (c) and (d) α = 0.008.

5.1. The quenched noise as control parameter

5.1.1. Particles with mass. Let us start with the underdamped case with the same values
as previously. An extensive numerical study is required to determine the way the quenched
noise strength affects the structure of the domains of attraction; from α = 0 up to α = 1
was done. Some representative pictures corresponding to increasing values of α are shown in
figure 11(a)–(c). Initial conditions are obtained from a grid of 256 × 256 points. The effect
of increasing the quenched noise level is that the global shape of the domains is not modified,
but the number of dots in the negative mean velocity attractor diminishes as α increases: the
negative domain of attractions dissolves as α increases. In order to verify that the shape of
the velocity domain remains unchanged, figure 11(d) shows the same strength of disorder as
figure 11(b) but enlarging the number of initial conditions to a grid of 1024 × 1024 points.

All these figures show that the negative attractor dissolves as α increases. This result can
be summarized in figure 12, where the function

P(α) = N−
N− + N+

, (12)
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Figure 12. P(α) as a function of the quenched noise strength for � = 0.896 65.

with N +
− , the number of initial conditions corresponding to the +

− 1 velocity domain, is plotted
against α. This figure shows how the number of initial conditions in the domain of the negative
mean velocity attractor dramatically diminishes for α ∼= 0.0075.

An interesting case is particles moving in inhomogeneous media. We work with an
ensemble consisting of a hundred particles having identical initial velocities v0 but initial
positions equally distributed in the range [xmin, xmax]. The initial probability density is given by

ρ(x, v, 0) = δ(v − v0)[H (x − xmin) − H (x − xmax)]. (13)

The particles move in an inhomogeneous medium with two regions separated by an
interface located at x = 0. Some representative results are shown in figure 13, where the
stroboscopic normalized position of each particle is plotted as a function of the normalized
time. Figure 13(a) shows the case with small quenched noise. The particles separate in two
bunches moving with positive and negative mean velocities respectively. As the bunch going
to the left enters the disordered medium it continues without any important effect.

Asα increases, more and more particles initially going to the left are dispersed and reflected
to the right, diminishing the negative current (figures 13(b) and (c)). This implies that α may
be used as a control parameter of the positive and negative currents. For α ∼= 0.008 all the
particles are finally moving to the right. The depth of penetration decreases as α increases over
this value. Whenever a disorder threshold that depends on the mass of the particle is reached
the localization effect [15] sets in. The localization may be seen in figure 13(d), where a high
disorder strength is used and some particles are localized near zero.

5.1.2. The overdamped case. The control by quenched noise is specially interesting in the
overdamped ratchet, where it may be studied from the point of view of synchronization. We
are particularly interested in the influence of the quenched noise on 〈Ṽ 〉 and D̃. As all the
higher-order cumulants increase more slowly than tn/2, ρ(x, t) is asymptotically a Gaussian
and it is determined by the first two moments only. For every value of the control parameters
� and α we evaluate the positions of a packet of 200 particles, initially distributed over one
valley. The cumulants and their derivatives, 〈Ṽ 〉 and 〈D̃〉, are estimated by their value at
t̃ = 500 periods of the external driving force except in the cases � = 2.5 and � ∼= 2.637,
where t̃ = 10 000 was required.

We have studied the behaviour of the mean drift velocity 〈Ṽ 〉, as a function of α for several
values of �. The values of � were selected to show some of the typical situations that were
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Figure 13. (a) Stroboscopic positions of an ensemble of 100 particles moving in an inhomogeneous
medium. All the particles start with velocity v0 = 1 and initial positions between xmin = 50λ and
xmin = 51λ. The region x � 0 has no spatial disorder. The region x < 0 has quenched disorder
with strength α. (a) α = 0.001, (b) α = 0.005, (c) α = 0.008 and (d) α = 0.6.

found in our extensive numerical study. We note that, in some cases, noise enhances the drift
motion, but in other cases it makes 〈Ṽ 〉 decrease. Furthermore, for every �, there exists a
specific threshold αth over which 〈Ṽ 〉 suddenly drops to zero. These characteristics may be
explained for each curve of figure 14, on the basis of the synchronized motion in the perfect
lattice (see figure 9), by the following procedure.

Step 1. Define �app = � + αξ(x̃). In fact, only the extreme values of �app are meaningful.
They are �min = � − α and �max = � + α.

Step 2. Using figure 9 determine the reachable synchronization zones, as well as the
characteristic synchronized motion of the particles in each zone (this characteristic motion is
resumed each zone label).

Step 3. Evaluate the allowed values for 〈ṽ〉; they are determined by all the combinations
of the differences between the positive and negative numbers in the labels of the reachable
zones. These values determine if 〈Ṽ 〉 will be an increasing or a decreasing function of α.

Step 4. The threshold value αth is the minimum α making it possible for one of the allowed
values of step 3 to be zero.

Note that every particle is affected by different values of �app as it moves across different
valleys of the potential. But in cases where the particles oscillate over several valleys it is
convenient to define 〈�app〉+ as the time mean value of �app during the positive semicycle and
〈�app〉− as the time mean value of �app during the negative semicycle.
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Figure 14. Adimensional mean velocity 〈Ṽ 〉 as a function of α of the packet of particles. The
curves corresponds to � = 1.2, 1.5, 1.65, 2.5, and 2.637.

Let us give the details for � = 1.65. This � value is in the synchronization zone (+3,−1)

in figure 1(a). For α < 0.08, 〈�app〉 may belong only to zone (+3,−1). Then the only allowed
value of 〈ṽ〉 is 2 and 〈Ṽ 〉 does not change. For 0.08 < α < 0.10, 〈�app〉 may belong to zones
(+3,−1) or (+3,−0). The only allowed values of 〈ṽ〉 are 2 and 3. Consequently, 〈Ṽ 〉 will be
in between 2 and 3. This means that noise enhances the drift motion. For 0.10 < α < 0.11,
〈�app〉 may belong to zones (+3,−1), (+3,−0) or (+4,−1). The allowed values of 〈ṽ〉 are 2,
3 and 4. Consequently, 〈Ṽ 〉 continue increasing with α. For 0.11 < α < 0.18, 〈�app〉 may
belong to zones (+3,−0), (+3,−1), (+4,−1) or (+4,−2). The allowed values of 〈ṽ〉 are 1, 2,
3 and 4. This means that according to the quenched noise found by the particle, it may increase
or decrease its mean velocity. A statistical study of the probability of different quenched noise
configurations will be reported elsewhere, showing that the value 1 is more probable than 2, 3
or 4, making 〈Ṽ 〉 decrease. For α > 0.18 region (+2,−0) becomes reachable by 〈�app〉 and
localization appears. By the same arguments as above, traps will be two valleys long.

Let us analyse the characteristics of traps from another point of view. The superposition of
the constant drift motion to an oscillation makes particles to move at variable speeds along the
material, staying longer in those valleys located at both ends of their oscillation. Consequently,
in spite of the zero spatial mean value of the force F produced by the ratchet potential,

〈F〉x̃ =
∫ x̃1+1

x̃1

F(x̃) dx̃ = U(x̃ + 1) − U(x̃) = 0, (14)

the time mean value felt by the particles and given by

〈F〉t̃ =
∫ t̃1+1

t̃1

F[x̃(t̃)] dt̃ (15)

will not be equal to zero but it is positive. In fact, this is the reason a sinusoidal force produces
a drift when it is added to the ratchet potential.

Traps are several contiguous valleys with a negative quenched noise time mean value,
that exactly compensates the positive time mean value of the ratchet potential force. When
localization appears 〈Ṽ 〉 falls to zero and the particles oscillate inside a small number of valleys,
in synchronism with the external driving force. For example, for � ∼= 2.637, 〈F〉t̃ = +0.0366.
This small value may be obtained with α values as small as 0.05 as pointed in our analysis
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Figure 15. Distribution function of a packet of 1200 particles in a disordered lattice with α = 0.05
for � � 2.637. (a) t̃ = 200; (b) t̃ = 1000. The small bins in the particle density function are
produced by localized particles.

0 100 200 300 400 500
0

50

100

150

200

250

300

350

400

t
~ 

x 
~ 

Figure 16. Particle trapped in a lattice with quenched noise α = 0.05 for � � 2.637. Adimensional
position x̃ as a function of adimensional time t̃ . The particle becomes trapped at t � 300.

above. On the other hand, for � = 1.65, 〈F〉t̃
∼= +0.15. Then α � 0.15 is required for

� = 1.65. This is again compatible with our synchronization analysis.
The evolution of the particle density ρ(t) is shown in figure 15, with � ∼= 2.637 and

α = 0.05. As time increases, more and more particles get trapped, diminishing drastically
the value of 〈Ṽ 〉. One of the localized particles is shown in figure 16 where the trap is in the
region between valleys 388 and 394. In this region, the ratchet and noise forces felt by the
particles are exactly cancelled by the time mean value of the quenched noise (remember that
the driving force has zero time mean value). A trapped particle oscillates in synchronism with
the external driving force. In the case of � � 2.637 the oscillation covers a six-valley-long
trap.

Let us now study the adimensional diffusion coefficient D̃ as a function of α. Diffusion
is produced because quenched noise makes particles have different allowed mean velocities
〈ṽ〉 instead of the only value allowed in the perfect lattice. Two typical cases are reported in
figure 6: � = 1.5 (see figure 17(a)) and � = 1.65 (see figure 17(b)). For � = 1.5 localization
does not appear in the α range considered, [0, 0.24]. The diffusion coefficient is an increasing
function of α, indicating that diffusion is enhanced by noise because the range of allowed
values of 〈ṽ〉 enlarges with α. On the other hand, in the case � = 1.65, localization appears
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Figure 17. Adimensional diffusion coefficient D̃ as a function of α, for (a) � = 1.5 and
(b) � = 1.65.
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Figure 18. Typical time evolution of the second order cumulant and its derivative when localization
exists. Here α = 0.18 and � = 1.65. (a) Second adimensional cumulant C̃2. (b) For t � 185 all
the particles become trapped and the adimensional diffusion coefficient D̃ is zero. The transitory
evolution of D̃(t̃) depends on realization.

for α � αth, making D̃ decrease to zero. We would like to emphasize that in figures 14
and 17 Nmax = 10 000 was needed in order to obtain a good estimate of 〈Ṽ 〉 and D̃ over the
entire range of values of �. The reason is that the transitory time D̃ becomes strongly dependent
on realization, as demonstrated in figure 18, where we show plots of the typical time evolution
of the second order cumulant and its derivative when localization exists, for α = 0.18 and
� = 1.65. Figure 18(a) shows the second adimensional cumulant C̃2, and figure 18(b) shows
that for t � 185 all the particles become trapped and the adimensional diffusion coefficient D̃
is zero. Therefore, the transitory evolution of D̃(t̃) depends on realization. Thus, the transitory
time for all the particles to be trapped considerably increases when localization with long traps
is present.

6. Conclusions

Different strategies to control the current of deterministic ratchets, in the inertial and also in
the overdamped limit, were reviewed in this work. The control parameters analysed in the
inertial limit were the strength and frequency of the periodic external force, the strength of the
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quenched noise that models a non-perfectly-periodic potential, and the mass of the particles.
Control mechanisms are associated with the fractal nature of the basins of attraction of the mean
velocity attractors. Small perturbations of the control variable may produce drift reversal. The
analysis for the overdamped limit is focused on synchronization of the motion of the particles
with the external sinusoidal driving force for two different substrates: a perfect lattice without
disorder and a lattice with noncorrelated quenched noise. The amplitude of the driving force
and the strength of the quenched noise were used as control parameters in the overdamped
case.
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